

Review

What did you learn yesterday?

- What did you learn about (concepts)?
- What did you learn how to do (skills, procedures)?
- What do you now have more confidence about, or have changed your opinion about (attitudes)?

Without looking at your notes, write three or four things you learned yesterday.

Defining Instructor Roles

	T1 Authority, Expert	T2 Salesperson, Motivator	T3 Facilitator	T4 Delegator	
S4 Self-Directed Learner	Severe Mismatch	Mismatch	Near Match	Match	
S3 Involved Learner	Mismatch	Near Match	Match	Near Match	
S2 Interested Learner	Near Match	Match	Near Match	Mismatch	
S1 Dependent Learner	Match	Near Match	Mismatch	Severe Mismatch	
Adapted from Grow, 199					

Designing Learning Experiences

- What are the activities in which students will engage?
- What tasks are students expected to accomplish?
- What projects will students be working on?

Duke University

Active and Experiential Learning

ACTIVE LEARNING

Engages students directly in thinking and problem solving activities

Emphasis is on engaging students in manipulating, applying, analyzing, and evaluating ideas

EXPERIENTIAL LEARNING

Active learning in which students take on roles that simulate professional engineering practice

Examples:

Pair-and-Share Group discussions Debates Concept questions

Examples:

Design-implement experiences Problem-based learning Simulations Case studies

Rationale for Active Learning: Constructivism

- What is learned is a function of the goals, content, context, and activity of the learner
- Students build their own internal frameworks of knowledge upon which they "attach" new ideas
- Cognitive conflict is the stimulus for learning

Rationale for Active Learning: Metacognition

- Knowing about knowing affects learning
- Students are encouraged to think critically and monitor their understanding
- Students reflect not only on what they know, but on how they know it

Massachusetts Institute of Technology

Rationale for Active Learning: Social Negotiation

- Social and cultural factors affect learning
- Knowledge evolves through social negotiation and evaluation of the viability of individual understandings
- Collaboration promotes project-based learning

Massachusetts Institute of Technology

Concept Questions

- Focus on a single concept
- Are not solvable by relying solely on equations
- Reveal common difficulties with the concepts
- Have several plausible answers based on typical student misunderstandings

Sample Concept Question

fixed but free to rotate

Given the water behaves as shown above, which direction will the cylinder rotate when the stream first makes contact with the cylinder?

- 1. Clockwise 🕽
- 2. Counter-clockwise

Walet Stream

Sample Concept Question

To maximize endurance, an airplane must fly in a manner that

- 1. Minimizes drag
- 2. Maximizes drag
- 3. Maximizes the lift/drag ratio
- 4. Maximizes power available
- 5. Minimizes power required

Massachusetts Institute of Technology

Sample Concept Question

Which of the following words or phrases is an example of a concept?

- 1. Ten degrees Celsius
- 2. Predicting an earthquake
- 3. Rotation of the earth
- 4. Constructing a flow chart
- 5. None of the above

Linköping Universitet

- Pose a selected-response format question, *e.g.*, multiple choice, true-or-false
- Ask students to indicate their answers, e.g., show-ofhands, color index cards, electronic response system
- If majority have the correct answer, give a brief explanation, then move on
- If majority have incorrect answers, clarify, *e.g,* have students discuss with partners, give detailed explanation
- Take another poll of students' answers

Benefits of Concept Questions

- Easily incorporated into lectures
- Obtain immediate feedback on the level of class understanding
- Extend concepts in new directions
- Give students practice in using terminology and concepts
- Confront common misconceptions
- Enhance teamwork and communication skills
- Improve class participation and motivation

Project-Based Learning

- Student-centered and self-directed
- Organized around real-world problems
- Focused on authentic skills
- Collaborative
- With faculty as facilitators

Kunglica Tekniska Högskolan

Queen's University Belfast

Designing Project-Based Learning

- What is the overall goal or purpose?
- Who is the target audience?
- Where does this experience fit in the curriculum or program?
- What is the project's level of complexity?

Louisiana Tech University

QuickTime¹* and a TIFF (Uncompressed) decompress are needed to see Trispicture.

Levels Of Complexity						
		Increasing Complexity ->->->				
	Activity	I-0	D-I-O		C-D-I-O	
	Structure	Structur	ed	Uns	structured	
	Solution	Knowr	n Unł		nknown	
	Team	Individual	Sm Te	nall am	Large Team	
	Duration	Days	Weeks		Months	

Level Of Complexity: Basic

Building a model airplane from a kit

Activity	I-0
Structure	Structured
Solution	Known
Team	Individual
Duration	Days

Massachusetts Institute of Technology

Level Of Complexity: Basic

Building a model rocket from soda straws

Activity	(D)-I-O		
Structure	Structured		
Solution	Known		
Team	Small Team		
Duration	Days		

United States Naval Academy

Level Of Complexity: Advanced

Building a robot

Activity	D-I-O			
Structure	Structured			
Solution	Unknown			
Team	Small Team			
Duration	Weeks/Months			

Linköping Universitet

Level Of Complexity: Advanced

Sub-skimmer: underwater and overwater craft

Activity	C-D-I-O		
Structure	Unstructured		
Solution	Unknown		
Team	Large Team		
Duration	Months		

Kunglica Tekniska Högskolan

Exercise: Level Of Complexity

For the projects you have in your course, would you describe them as **basic** or **advanced**? Why?

Activity	
Structure	
Solution	
Team	
Duration	

Massachusetts Institute of Technology

Teamwork

- How many teams will there be, and how will the teams be formed?
 - Instructor-formed teams vs. self-selection
 - Most current research supports instructor-formed teams
- What criteria will you use to form the teams?
 - Diverse ability levels, common time blocks
 - Gender, culture, language
 - Expertise in project tasks
- How will team leaders be chosen?
 - Appointed by instructor
 - Chosen by team
 - Self-nomination

John Hopkins University

Communication

- What forms of communication will be included in the project?
 - Documentation
 - Drawings and graphics
 - Design analysis
 - Budget plan
- With whom will students be expected to communicate?

Describing Learning Environments

What kind of physical space and equipment are required or desirable?

What specific resources or materials are required? Who supplies them?

What level of technical support is required?

Chalmers Tekniska Högskola

Aligning Teaching Methods With Learning Outcomes

	Concept Questions	Muddy Cards	Cooperative Learning	Pre-Class Readings	Case Studies/ Simulations	Project- Based Learning
Conceptual Understanding						
Reasoning/ Problem Solving						
Skills/ Processes						
Creativity/ Synthesis						
Attitudes						

Muddiest-Part-of-the-Lecture

What is still "clear as mud" to you?

What methods for engaging students can you introduce or improve in your courses?